cs.AI updates on arXiv.org 07月15日 12:24
AGCD-Net: Attention Guided Context Debiasing Network for Emotion Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AGCD-Net模型,通过引入Hybrid ConvNeXt和AG-CIM模块,有效缓解情感识别中的上下文偏差问题,在CAER-S数据集上实现最先进性能。

arXiv:2507.09248v1 Announce Type: cross Abstract: Context-aware emotion recognition (CAER) enhances affective computing in real-world scenarios, but traditional methods often suffer from context bias-spurious correlation between background context and emotion labels (e.g. associating garden'' withhappy''). In this paper, we propose \textbf{AGCD-Net}, an Attention Guided Context Debiasing model that introduces \textit{Hybrid ConvNeXt}, a novel convolutional encoder that extends the ConvNeXt backbone by integrating Spatial Transformer Network and Squeeze-and-Excitation layers for enhanced feature recalibration. At the core of AGCD-Net is the Attention Guided - Causal Intervention Module (AG-CIM), which applies causal theory, perturbs context features, isolates spurious correlations, and performs an attention-driven correction guided by face features to mitigate context bias. Experimental results on the CAER-S dataset demonstrate the effectiveness of AGCD-Net, achieving state-of-the-art performance and highlighting the importance of causal debiasing for robust emotion recognition in complex settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

情感识别 上下文偏差 AGCD-Net ConvNeXt 注意力机制
相关文章