arXiv:2507.09149v1 Announce Type: cross Abstract: Health misinformation during the COVID-19 pandemic has significantly challenged public health efforts globally. This study applies the Elaboration Likelihood Model (ELM) to enhance misinformation detection on social media using a hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) model. The model aims to enhance the detection accuracy and reliability of misinformation classification by integrating ELM-based features such as text readability, sentiment polarity, and heuristic cues (e.g., punctuation frequency). The enhanced model achieved an accuracy of 97.37%, precision of 96.88%, recall of 98.50%, F1-score of 97.41%, and ROC-AUC of 99.50%. A combined model incorporating feature engineering further improved performance, achieving a precision of 98.88%, recall of 99.80%, F1-score of 99.41%, and ROC-AUC of 99.80%. These findings highlight the value of ELM features in improving detection performance, offering valuable contextual information. This study demonstrates the practical application of psychological theories in developing advanced machine learning algorithms to address health misinformation effectively.