cs.AI updates on arXiv.org 07月15日 12:24
Infinite Video Understanding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了多媒体AI领域的新挑战——无限视频理解,即模型对任意长度视频数据的持续处理和推理能力,并提出了相关研究方向。

arXiv:2507.09068v1 Announce Type: cross Abstract: The rapid advancements in Large Language Models (LLMs) and their multimodal extensions (MLLMs) have ushered in remarkable progress in video understanding. However, a fundamental challenge persists: effectively processing and comprehending video content that extends beyond minutes or hours. While recent efforts like Video-XL-2 have demonstrated novel architectural solutions for extreme efficiency, and advancements in positional encoding such as HoPE and VideoRoPE++ aim to improve spatio-temporal understanding over extensive contexts, current state-of-the-art models still encounter significant computational and memory constraints when faced with the sheer volume of visual tokens from lengthy sequences. Furthermore, maintaining temporal coherence, tracking complex events, and preserving fine-grained details over extended periods remain formidable hurdles, despite progress in agentic reasoning systems like Deep Video Discovery. This position paper posits that a logical, albeit ambitious, next frontier for multimedia research is Infinite Video Understanding -- the capability for models to continuously process, understand, and reason about video data of arbitrary, potentially never-ending duration. We argue that framing Infinite Video Understanding as a blue-sky research objective provides a vital north star for the multimedia, and the wider AI, research communities, driving innovation in areas such as streaming architectures, persistent memory mechanisms, hierarchical and adaptive representations, event-centric reasoning, and novel evaluation paradigms. Drawing inspiration from recent work on long/ultra-long video understanding and several closely related fields, we outline the core challenges and key research directions towards achieving this transformative capability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多媒体AI 无限视频理解 视频处理 AI研究
相关文章