cs.AI updates on arXiv.org 07月15日 12:24
Intuitive Fine-Tuning: Towards Simplifying Alignment into a Single Process
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将SFT与PO融合的直觉微调模型IFT,通过时间残差连接捕捉语言模型的整个答案的直觉,提高偏好估计和优化,实验表明IFT在多个任务上表现优异。

arXiv:2405.11870v3 Announce Type: replace-cross Abstract: Supervised Fine-Tuning (SFT) and Preference Optimization (PO) are key processes for aligning Language Models (LMs) with human preferences post pre-training. While SFT excels in efficiency and PO in effectiveness, they are often combined sequentially without integrating their optimization objectives. This approach ignores the opportunities to bridge their paradigm gap and take the strengths from both. In this paper, we interpret SFT and PO with two sub-processes -- Preference Estimation and Transition Optimization -- defined at token level within the Markov Decision Process (MDP). This modeling shows that SFT is only a special case of PO with inferior estimation and optimization. PO estimates the model's preference by its entire generation, while SFT only scores model's subsequent predicted tokens based on prior tokens from ground truth answer. These priors deviates from model's distribution, hindering the preference estimation and transition optimization. Building on this view, we introduce Intuitive Fine-Tuning (IFT) to integrate SFT and PO into a single process. Through a temporal residual connection, IFT brings better estimation and optimization by capturing LMs' intuitive sense of its entire answers. But it solely relies on a single policy and the same volume of non-preference-labeled data as SFT. Our experiments show that IFT performs comparably or even superiorly to SFT and some typical PO methods across several tasks, particularly those require generation, reasoning, and fact-following abilities. An explainable Frozen Lake game further validates the effectiveness of IFT for getting competitive policy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SFT PO 直觉微调 语言模型 偏好优化
相关文章