cs.AI updates on arXiv.org 07月15日
AudioMAE++: learning better masked audio representations with SwiGLU FFNs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为AudioMAE++的音频掩码自编码器,通过采用macaron-style变压器块和门控线性单元,在AudioSet数据集上实现了优于现有方法的性能,展示了其在音频分类和语音基准测试中的优越性。

arXiv:2507.10464v1 Announce Type: cross Abstract: Masked Autoencoders (MAEs) trained on audio spectrogram patches have emerged as a prominent approach for learning self-supervised audio representations. While several recent papers have evaluated key aspects of training MAEs on audio data, the majority of these approaches still leverage vanilla transformer building blocks, whereas the transformer community has seen steady integration of newer architectural advancements. In this work, we propose AudioMAE++, a revamped audio masked autoencoder with two such enhancements, namely macaron-style transformer blocks with gated linear units. When pretrained on the AudioSet dataset, the proposed AudioMAE++ models outperform existing MAE based approaches on 10 diverse downstream tasks, demonstrating excellent performance on audio classification and speech-based benchmarks. The proposed AudioMAE++ models also demonstrate excellent scaling characteristics, outperforming directly comparable standard MAE baselines with up to 4x more parameters.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音频自监督学习 掩码自编码器 AudioSet 音频分类
相关文章