cs.AI updates on arXiv.org 07月15日 12:24
Evaluating Fake Music Detection Performance Under Audio Augmentations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了音乐深度伪造检测模型在音频增强下的鲁棒性,通过构建包含真实与合成音乐的数据库,分析音频变换对分类准确性的影响,发现模型在轻微增强下性能显著下降。

arXiv:2507.10447v1 Announce Type: cross Abstract: With the rapid advancement of generative audio models, distinguishing between human-composed and generated music is becoming increasingly challenging. As a response, models for detecting fake music have been proposed. In this work, we explore the robustness of such systems under audio augmentations. To evaluate model generalization, we constructed a dataset consisting of both real and synthetic music generated using several systems. We then apply a range of audio transformations and analyze how they affect classification accuracy. We test the performance of a recent state-of-the-art musical deepfake detection model in the presence of audio augmentations. The performance of the model decreases significantly even with the introduction of light augmentations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音乐深度伪造 检测模型 鲁棒性 音频增强 分类准确性
相关文章