cs.AI updates on arXiv.org 07月15日 12:24
Efficient Triple Modular Redundancy for Reliability Enhancement of DNNs Using Explainable AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用XAI方法增强DNN对位翻转故障的可靠性,通过LRP技术计算参数重要性分数,以TMR技术保护关键权重,实现60%以上的可靠性提升。

arXiv:2507.08829v1 Announce Type: cross Abstract: Deep Neural Networks (DNNs) are widely employed in safety-critical domains, where ensuring their reliability is essential. Triple Modular Redundancy (TMR) is an effective technique to enhance the reliability of DNNs in the presence of bit-flip faults. In order to handle the significant overhead of TMR, it is applied selectively on the parameters and components with the highest contribution at the model output. Hence, the accuracy of the selection criterion plays the key role on the efficiency of TMR. This paper presents an efficient TMR approach to enhance the reliability of DNNs against bit-flip faults using an Explainable Artificial Intelligence (XAI) method. Since XAI can provide valuable insights about the importance of individual neurons and weights in the performance of the network, they can be applied as the selection metric in TMR techniques. The proposed method utilizes a low-cost, gradient-based XAI technique known as Layer-wise Relevance Propagation (LRP) to calculate importance scores for DNN parameters. These scores are then used to enhance the reliability of the model, with the most critical weights being protected by TMR. The proposed approach is evaluated on two DNN models, VGG16 and AlexNet, using datasets such as MNIST and CIFAR-10. The results demonstrate that the method can protect the AlexNet model at a bit error rate of 10-4, achieving over 60% reliability improvement while maintaining the same overhead as state-of-the-art methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 可靠性提升 XAI技术 TMR技术 神经网络
相关文章