arXiv:2507.08827v1 Announce Type: cross Abstract: Many complex networks display remarkable resilience under external perturbations, internal failures and environmental changes, yet they can swiftly deteriorate into dysfunction upon the removal of a few keystone nodes. Discovering theories that measure network resilience offers the potential to prevent catastrophic collapses--from species extinctions to financial crise--with profound implications for real-world systems. Current resilience theories address the problem from a single perspective of topology, neglecting the crucial role of system dynamics, due to the intrinsic complexity of the coupling between topology and dynamics which exceeds the capabilities of human analytical methods. Here, we report an automatic method for resilience theory discovery, which learns from how AI solves a complicated network dismantling problem and symbolizes its network attack strategies into theoretical formulas. This proposed self-inductive approach discovers the first resilience theory that accounts for both topology and dynamics, highlighting how the correlation between node degree and state shapes overall network resilience, and offering insights for designing early warning signals of systematic collapses. Additionally, our approach discovers formulas that refine existing well-established resilience theories with over 37.5% improvement in accuracy, significantly advancing human understanding of complex networks with AI.