cs.AI updates on arXiv.org 07月15日 12:24
Advancing network resilience theories with symbolized reinforcement learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种自动发现网络韧性理论的方法,结合拓扑与动力学,提升对复杂网络的理解。

arXiv:2507.08827v1 Announce Type: cross Abstract: Many complex networks display remarkable resilience under external perturbations, internal failures and environmental changes, yet they can swiftly deteriorate into dysfunction upon the removal of a few keystone nodes. Discovering theories that measure network resilience offers the potential to prevent catastrophic collapses--from species extinctions to financial crise--with profound implications for real-world systems. Current resilience theories address the problem from a single perspective of topology, neglecting the crucial role of system dynamics, due to the intrinsic complexity of the coupling between topology and dynamics which exceeds the capabilities of human analytical methods. Here, we report an automatic method for resilience theory discovery, which learns from how AI solves a complicated network dismantling problem and symbolizes its network attack strategies into theoretical formulas. This proposed self-inductive approach discovers the first resilience theory that accounts for both topology and dynamics, highlighting how the correlation between node degree and state shapes overall network resilience, and offering insights for designing early warning signals of systematic collapses. Additionally, our approach discovers formulas that refine existing well-established resilience theories with over 37.5% improvement in accuracy, significantly advancing human understanding of complex networks with AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI 网络韧性 复杂网络 理论发现 系统安全
相关文章