cs.AI updates on arXiv.org 07月15日 12:24
Analysis of AI Techniques for Orchestrating Edge-Cloud Application Migration
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从马尔可夫决策过程出发,对比分析了人工智能规划与强化学习在解决边缘云计算应用迁移问题中的应用,并基于状态空间定义提出新的分类方法,旨在理解在新兴计算环境中如何有效编排应用迁移。

arXiv:2507.10119v1 Announce Type: new Abstract: Application migration in edge-cloud system enables high QoS and cost effective service delivery. However, automatically orchestrating such migration is typically solved with heuristic approaches. Starting from the Markov Decision Process (MDP), in this paper, we identify, analyze and compare selected state-of-the-art Artificial Intelligence (AI) planning and Reinforcement Learning (RL) approaches for solving the class of edge-cloud application migration problems that can be modeled as Towers of Hanoi (ToH) problems. We introduce a new classification based on state space definition and analyze the compared models also through this lense. The aim is to understand available techniques capable of orchestrating such application migration in emerging computing continuum environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

边缘云计算 应用迁移 人工智能 强化学习 马尔可夫决策过程
相关文章