cs.AI updates on arXiv.org 前天 12:24
Bridging Bots: from Perception to Action via Multimodal-LMs and Knowledge Graphs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合多模态语言模型与知识图谱的神经符号框架,旨在提升机器人应用间的互操作性,并通过实验验证了该框架的有效性。

arXiv:2507.09617v1 Announce Type: new Abstract: Personal service robots are deployed to support daily living in domestic environments, particularly for elderly and individuals requiring assistance. These robots must perceive complex and dynamic surroundings, understand tasks, and execute context-appropriate actions. However, current systems rely on proprietary, hard-coded solutions tied to specific hardware and software, resulting in siloed implementations that are difficult to adapt and scale across platforms. Ontologies and Knowledge Graphs (KGs) offer a solution to enable interoperability across systems, through structured and standardized representations of knowledge and reasoning. However, symbolic systems such as KGs and ontologies struggle with raw and noisy sensory input. In contrast, multimodal language models are well suited for interpreting input such as images and natural language, but often lack transparency, consistency, and knowledge grounding. In this work, we propose a neurosymbolic framework that combines the perceptual strengths of multimodal language models with the structured representations provided by KGs and ontologies, with the aim of supporting interoperability in robotic applications. Our approach generates ontology-compliant KGs that can inform robot behavior in a platform-independent manner. We evaluated this framework by integrating robot perception data, ontologies, and five multimodal models (three LLaMA and two GPT models), using different modes of neural-symbolic interaction. We assess the consistency and effectiveness of the generated KGs across multiple runs and configurations, and perform statistical analyzes to evaluate performance. Results show that GPT-o1 and LLaMA 4 Maverick consistently outperform other models. However, our findings also indicate that newer models do not guarantee better results, highlighting the critical role of the integration strategy in generating ontology-compliant KGs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人应用 神经符号框架 知识图谱 多模态语言模型 互操作性
相关文章