cs.AI updates on arXiv.org 07月15日 12:24
Learning to Control Dynamical Agents via Spiking Neural Networks and Metropolis-Hastings Sampling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出采用Metropolis-Hastings采样训练SNN,用于强化学习中的动态代理控制,有效优化网络资源与训练效率。

arXiv:2507.09540v1 Announce Type: new Abstract: Spiking Neural Networks (SNNs) offer biologically inspired, energy-efficient alternatives to traditional Deep Neural Networks (DNNs) for real-time control systems. However, their training presents several challenges, particularly for reinforcement learning (RL) tasks, due to the non-differentiable nature of spike-based communication. In this work, we introduce what is, to our knowledge, the first framework that employs Metropolis-Hastings (MH) sampling, a Bayesian inference technique, to train SNNs for dynamical agent control in RL environments without relying on gradient-based methods. Our approach iteratively proposes and probabilistically accepts network parameter updates based on accumulated reward signals, effectively circumventing the limitations of backpropagation while enabling direct optimization on neuromorphic platforms. We evaluated this framework on two standard control benchmarks: AcroBot and CartPole. The results demonstrate that our MH-based approach outperforms conventional Deep Q-Learning (DQL) baselines and prior SNN-based RL approaches in terms of maximizing the accumulated reward while minimizing network resources and training episodes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Spiking Neural Networks Metropolis-Hastings采样 强化学习 网络优化 DNN
相关文章