cs.AI updates on arXiv.org 07月15日 12:24
LLM-Stackelberg Games: Conjectural Reasoning Equilibria and Their Applications to Spearphishing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将大型语言模型(LLMs)融入领导者-跟随者之间的战略互动,构建LLM-Stackelberg博弈框架,通过结构化提示、生成概率行为和策略适应,定义两种均衡概念,以捕捉有限理性、非对称信息和元认知适应,并应用于网络钓鱼案例研究。

arXiv:2507.09407v1 Announce Type: new Abstract: We introduce the framework of LLM-Stackelberg games, a class of sequential decision-making models that integrate large language models (LLMs) into strategic interactions between a leader and a follower. Departing from classical Stackelberg assumptions of complete information and rational agents, our formulation allows each agent to reason through structured prompts, generate probabilistic behaviors via LLMs, and adapt their strategies through internal cognition and belief updates. We define two equilibrium concepts: reasoning and behavioral equilibrium, which aligns an agent's internal prompt-based reasoning with observable behavior, and conjectural reasoning equilibrium, which accounts for epistemic uncertainty through parameterized models over an opponent's response. These layered constructs capture bounded rationality, asymmetric information, and meta-cognitive adaptation. We illustrate the framework through a spearphishing case study, where a sender and a recipient engage in a deception game using structured reasoning prompts. This example highlights the cognitive richness and adversarial potential of LLM-mediated interactions. Our results show that LLM-Stackelberg games provide a powerful paradigm for modeling decision-making in domains such as cybersecurity, misinformation, and recommendation systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM-Stackelberg博弈 大型语言模型 决策模型 信息安全
相关文章