cs.AI updates on arXiv.org 07月15日 12:24
Abusive text transformation using LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了大型语言模型(LLMs)在处理辱骂性文本中的表现,对比了不同模型在识别、转化辱骂性文本的能力,并评估了其语义和情感保持程度。

arXiv:2507.10177v1 Announce Type: cross Abstract: Although Large Language Models (LLMs) have demonstrated significant advancements in natural language processing tasks, their effectiveness in the classification and transformation of abusive text into non-abusive versions remains an area for exploration. In this study, we aim to use LLMs to transform abusive text (tweets and reviews) featuring hate speech and swear words into non-abusive text, while retaining the intent of the text. We evaluate the performance of two state-of-the-art LLMs, such as Gemini, GPT-4o, DeekSeek and Groq, on their ability to identify abusive text. We them to transform and obtain a text that is clean from abusive and inappropriate content but maintains a similar level of sentiment and semantics, i.e. the transformed text needs to maintain its message. Afterwards, we evaluate the raw and transformed datasets with sentiment analysis and semantic analysis. Our results show Groq provides vastly different results when compared with other LLMs. We have identified similarities between GPT-4o and DeepSeek-V3.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 文本处理 辱骂性文本 效果评估
相关文章