cs.AI updates on arXiv.org 07月14日 12:08
To Trade or Not to Trade: An Agentic Approach to Estimating Market Risk Improves Trading Decisions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用大型语言模型(LLM)发现金融时间序列随机微分方程的代理系统,通过市场模拟实验证明该系统在多只股票上的交易策略优于标准LLM代理,提高了夏普比率,验证了LLM与代理模型发现结合在市场风险估计和盈利交易决策上的有效性。

arXiv:2507.08584v1 Announce Type: cross Abstract: Large language models (LLMs) are increasingly deployed in agentic frameworks, in which prompts trigger complex tool-based analysis in pursuit of a goal. While these frameworks have shown promise across multiple domains including in finance, they typically lack a principled model-building step, relying instead on sentiment- or trend-based analysis. We address this gap by developing an agentic system that uses LLMs to iteratively discover stochastic differential equations for financial time series. These models generate risk metrics which inform daily trading decisions. We evaluate our system in both traditional backtests and using a market simulator, which introduces synthetic but causally plausible price paths and news events. We find that model-informed trading strategies outperform standard LLM-based agents, improving Sharpe ratios across multiple equities. Our results show that combining LLMs with agentic model discovery enhances market risk estimation and enables more profitable trading decisions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 金融预测 代理系统 市场风险 交易策略
相关文章