cs.AI updates on arXiv.org 07月14日 12:08
White-Basilisk: A Hybrid Model for Code Vulnerability Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为White-Basilisk的软件漏洞检测新方法,通过集成Mamba层、线性自注意力和专家混合框架,实现了高效且参数量仅为200M的漏洞检测,超越现有大型语言模型在代码安全领域的限制。

arXiv:2507.08540v1 Announce Type: cross Abstract: The proliferation of software vulnerabilities presents a significant challenge to cybersecurity, necessitating more effective detection methodologies. We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance while challenging prevailing assumptions in AI model scaling. Utilizing an innovative architecture that integrates Mamba layers, linear self-attention, and a Mixture of Experts framework, White-Basilisk achieves state-of-the-art results in vulnerability detection tasks with a parameter count of only 200M. The model's capacity to process sequences of unprecedented length enables comprehensive analysis of extensive codebases in a single pass, surpassing the context limitations of current Large Language Models (LLMs). White-Basilisk exhibits robust performance on imbalanced, real-world datasets, while maintaining computational efficiency that facilitates deployment across diverse organizational scales. This research not only establishes new benchmarks in code security but also provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks, potentially redefining optimization strategies in AI development for domain-specific applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软件漏洞检测 白鲸鱼模型 人工智能
相关文章