cs.AI updates on arXiv.org 07月14日 12:08
PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对短文本多标签情感检测的系统,通过动态调整文档表示和学习算法,优化不同语言性能。研究评估了文档表示、降维和模型训练等关键组件,并分析了不同语言模型的有效性。

arXiv:2507.08499v1 Announce Type: cross Abstract: This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

情感检测 多语言 文档表示 模型训练
相关文章