cs.AI updates on arXiv.org 07月14日 12:08
SP$^2$T: Sparse Proxy Attention for Dual-stream Point Transformer
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了一种名为SP$^{2}$T的局部代理点云Transformer,通过改进采样、交互计算和信息融合,在3D理解任务上取得了突破性进展,在室内和室外3D理解基准测试中优于其他点云方法。

arXiv:2412.11540v2 Announce Type: replace-cross Abstract: Point transformers have demonstrated remarkable progress in 3D understanding through expanded receptive fields (RF), but further expanding the RF leads to dilution in group attention and decreases detailed feature extraction capability. Proxy, which serves as abstract representations for simplifying feature maps, enables global RF. However, existing proxy-based approaches face critical limitations: Global proxies incur quadratic complexity for large-scale point clouds and suffer positional ambiguity, while local proxy alternatives struggle with 1) Unreliable sampling from the geometrically diverse point cloud, 2) Inefficient proxy interaction computation, and 3) Imbalanced local-global information fusion; To address these challenges, we propose Sparse Proxy Point Transformer (SP$^{2}$T) -- a local proxy-based dual-stream point transformer with three key innovations: First, for reliable sampling, spatial-wise proxy sampling with vertex-based associations enables robust sampling on geometrically diverse point clouds. Second, for efficient proxy interaction, sparse proxy attention with a table-based relative bias effectively achieves the interaction with efficient map-reduce computation. Third, for local-global information fusion, our dual-stream architecture maintains local-global balance through parallel branches. Comprehensive experiments reveal that SP$^{2}$T sets state-of-the-art results with acceptable latency on indoor and outdoor 3D comprehension benchmarks, demonstrating marked improvement (+3.8% mIoU vs. SPoTr@S3DIS, +22.9% mIoU vs. PointASNL@Sem.KITTI) compared to other proxy-based point cloud methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

点云Transformer 3D理解 SP$^{2}$T
相关文章