cs.AI updates on arXiv.org 07月14日 12:08
CoCo-Bot: Energy-based Composable Concept Bottlenecks for Interpretable Generative Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CoCo-Bot,一种通过显式概念传递所有信息,无需辅助视觉线索的概念瓶颈生成模型,提升了概念的可控性和可解释性。

arXiv:2507.08334v1 Announce Type: cross Abstract: Concept Bottleneck Models (CBMs) provide interpretable and controllable generative modeling by routing generation through explicit, human-understandable concepts. However, previous generative CBMs often rely on auxiliary visual cues at the bottleneck to compensate for information not captured by the concepts, which undermines interpretability and compositionality. We propose CoCo-Bot, a post-hoc, composable concept bottleneck generative model that eliminates the need for auxiliary cues by transmitting all information solely through explicit concepts. Guided by diffusion-based energy functions, CoCo-Bot supports robust post-hoc interventions-such as concept composition and negation-across arbitrary concepts. Experiments using StyleGAN2 pre-trained on CelebA-HQ show that CoCo-Bot improves concept-level controllability and interpretability, while maintaining competitive visual quality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

概念瓶颈模型 生成模型 CoCo-Bot
相关文章