cs.AI updates on arXiv.org 07月14日 12:08
Invariant-based Robust Weights Watermark for Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种无需重训练或微调的鲁棒水印方案,为Transformer模型提供知识产权保护,通过解决线性约束和噪声机制实现水印隐藏,并在多个模型上验证其有效性和鲁棒性。

arXiv:2507.08288v1 Announce Type: cross Abstract: Watermarking technology has gained significant attention due to the increasing importance of intellectual property (IP) rights, particularly with the growing deployment of large language models (LLMs) on billions resource-constrained edge devices. To counter the potential threats of IP theft by malicious users, this paper introduces a robust watermarking scheme without retraining or fine-tuning for transformer models. The scheme generates a unique key for each user and derives a stable watermark value by solving linear constraints constructed from model invariants. Moreover, this technology utilizes noise mechanism to hide watermark locations in multi-user scenarios against collusion attack. This paper evaluates the approach on three popular models (Llama3, Phi3, Gemma), and the experimental results confirm the strong robustness across a range of attack methods (fine-tuning, pruning, quantization, permutation, scaling, reversible matrix and collusion attacks).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

水印技术 知识产权 Transformer模型
相关文章