cs.AI updates on arXiv.org 07月14日 12:08
Quantum-Accelerated Neural Imputation with Large Language Models (LLMs)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出量子-UnIMP框架,结合浅层量子电路与LLM,通过量子特征映射提升数据补全性能,实验结果显示在混合类型数据集上显著优于现有方法。

arXiv:2507.08255v1 Announce Type: cross Abstract: Missing data presents a critical challenge in real-world datasets, significantly degrading the performance of machine learning models. While Large Language Models (LLMs) have recently demonstrated remarkable capabilities in tabular data imputation, exemplified by frameworks like UnIMP, their reliance on classical embedding methods often limits their ability to capture complex, non-linear correlations, particularly in mixed-type data scenarios encompassing numerical, categorical, and textual features. This paper introduces Quantum-UnIMP, a novel framework that integrates shallow quantum circuits into an LLM-based imputation architecture. Our core innovation lies in replacing conventional classical input embeddings with quantum feature maps generated by an Instantaneous Quantum Polynomial (IQP) circuit. This approach enables the model to leverage quantum phenomena such as superposition and entanglement, thereby learning richer, more expressive representations of data and enhancing the recovery of intricate missingness patterns. Our experiments on benchmark mixed-type datasets demonstrate that Quantum-UnIMP reduces imputation error by up to 15.2% for numerical features (RMSE) and improves classification accuracy by 8.7% for categorical features (F1-Score) compared to state-of-the-art classical and LLM-based methods. These compelling results underscore the profound potential of quantum-enhanced representations for complex data imputation tasks, even with near-term quantum hardware.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子特征映射 数据补全 LLM 量子计算
相关文章