cs.AI updates on arXiv.org 07月14日 12:08
InsightBuild: LLM-Powered Causal Reasoning in Smart Building Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出InsightBuild框架,结合因果分析与大型语言模型,为智能建筑能耗提供可读性强的因果解释,帮助设施管理人员诊断和缓解能源低效。

arXiv:2507.08235v1 Announce Type: cross Abstract: Smart buildings generate vast streams of sensor and control data, but facility managers often lack clear explanations for anomalous energy usage. We propose InsightBuild, a two-stage framework that integrates causality analysis with a fine-tuned large language model (LLM) to provide human-readable, causal explanations of energy consumption patterns. First, a lightweight causal inference module applies Granger causality tests and structural causal discovery on building telemetry (e.g., temperature, HVAC settings, occupancy) drawn from Google Smart Buildings and Berkeley Office datasets. Next, an LLM, fine-tuned on aligned pairs of sensor-level causes and textual explanations, receives as input the detected causal relations and generates concise, actionable explanations. We evaluate InsightBuild on two real-world datasets (Google: 2017-2022; Berkeley: 2018-2020), using expert-annotated ground-truth causes for a held-out set of anomalies. Our results demonstrate that combining explicit causal discovery with LLM-based natural language generation yields clear, precise explanations that assist facility managers in diagnosing and mitigating energy inefficiencies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能建筑 能耗分析 因果分析 大型语言模型 能源管理
相关文章