cs.AI updates on arXiv.org 07月14日 12:08
Geo-ORBIT: A Federated Digital Twin Framework for Scene-Adaptive Lane Geometry Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Geo-ORBIT框架,结合实时车道检测、数字孪生同步和联邦元学习,解决交通系统数字孪生在隐私、通信和计算效率方面的挑战,通过GeoLane模型实现高效车道几何感知。

arXiv:2507.08743v1 Announce Type: cross Abstract: Digital Twins (DT) have the potential to transform traffic management and operations by creating dynamic, virtual representations of transportation systems that sense conditions, analyze operations, and support decision-making. A key component for DT of the transportation system is dynamic roadway geometry sensing. However, existing approaches often rely on static maps or costly sensors, limiting scalability and adaptability. Additionally, large-scale DTs that collect and analyze data from multiple sources face challenges in privacy, communication, and computational efficiency. To address these challenges, we introduce Geo-ORBIT (Geometrical Operational Roadway Blueprint with Integrated Twin), a unified framework that combines real-time lane detection, DT synchronization, and federated meta-learning. At the core of Geo-ORBIT is GeoLane, a lightweight lane detection model that learns lane geometries from vehicle trajectory data using roadside cameras. We extend this model through Meta-GeoLane, which learns to personalize detection parameters for local entities, and FedMeta-GeoLane, a federated learning strategy that ensures scalable and privacy-preserving adaptation across roadside deployments. Our system is integrated with CARLA and SUMO to create a high-fidelity DT that renders highway scenarios and captures traffic flows in real-time. Extensive experiments across diverse urban scenes show that FedMeta-GeoLane consistently outperforms baseline and meta-learning approaches, achieving lower geometric error and stronger generalization to unseen locations while drastically reducing communication overhead. This work lays the foundation for flexible, context-aware infrastructure modeling in DTs. The framework is publicly available at https://github.com/raynbowy23/FedMeta-GeoLane.git.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数字孪生 交通系统 GeoLane 联邦学习 Geo-ORBIT
相关文章