cs.AI updates on arXiv.org 07月14日 12:08
Quantum Properties Trojans (QuPTs) for Attacking Quantum Neural Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对量子神经网络的新型攻击方法,名为量子属性木马(QuPTs),通过量子门属性插入噪声并实现叠加,严重影响了量子电路性能,首次实现针对全量子神经网络的独立攻击。

arXiv:2507.08202v1 Announce Type: cross Abstract: Quantum neural networks (QNN) hold immense potential for the future of quantum machine learning (QML). However, QNN security and robustness remain largely unexplored. In this work, we proposed novel Trojan attacks based on the quantum computing properties in a QNN-based binary classifier. Our proposed Quantum Properties Trojans (QuPTs) are based on the unitary property of quantum gates to insert noise and Hadamard gates to enable superposition to develop Trojans and attack QNNs. We showed that the proposed QuPTs are significantly stealthier and heavily impact the quantum circuits' performance, specifically QNNs. The most impactful QuPT caused a deterioration of 23% accuracy of the compromised QNN under the experimental setup. To the best of our knowledge, this is the first work on the Trojan attack on a fully quantum neural network independent of any hybrid classical-quantum architecture.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子神经网络 安全攻击 量子计算
相关文章