cs.AI updates on arXiv.org 07月14日 12:08
KELPS: A Framework for Verified Multi-Language Autoformalization via Semantic-Syntactic Alignment
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为KELPS的神经符号框架,用于将非正式数学转化为机器可验证的定理,通过翻译、合成和过滤非正式数据,提高机器在形式化数学定理验证方面的性能。

arXiv:2507.08665v1 Announce Type: cross Abstract: Modern large language models (LLMs) show promising progress in formalizing informal mathematics into machine-verifiable theorems. However, these methods still face bottlenecks due to the limited quantity and quality of multilingual parallel corpora. In this paper, we propose a novel neuro-symbolic framework KELPS (Knowledge-Equation based Logical Processing System) to address these problems. KELPS is an iterative framework for translating, synthesizing, and filtering informal data into multiple formal languages (Lean, Coq, and Isabelle). First, we translate natural language into Knowledge Equations (KEs), a novel language that we designed, theoretically grounded in assertional logic. Next, we convert them to target languages through rigorously defined rules that preserve both syntactic structure and semantic meaning. This process yielded a parallel corpus of over 60,000 problems. Our framework achieves 88.9% syntactic accuracy (pass@1) on MiniF2F, outperforming SOTA models such as Deepseek-V3 (81%) and Herald (81.3%) across multiple datasets. All datasets and codes are available in the supplementary materials.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 形式化数学 神经符号框架 KELPS 机器验证
相关文章