cs.AI updates on arXiv.org 07月14日 12:08
Towards Evaluating Robustness of Prompt Adherence in Text to Image Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对文本到图像模型的综合评估框架,通过构建新型数据集评估模型在生成图像时的可靠性及对输入文本提示的遵守程度,并对比分析了Stable Diffusion和Janus等模型的表现。

arXiv:2507.08039v1 Announce Type: cross Abstract: The advancements in the domain of LLMs in recent years have surprised many, showcasing their remarkable capabilities and diverse applications. Their potential applications in various real-world scenarios have led to significant research on their reliability and effectiveness. On the other hand, multimodal LLMs and Text-to-Image models have only recently gained prominence, especially when compared to text-only LLMs. Their reliability remains constrained due to insufficient research on assessing their performance and robustness. This paper aims to establish a comprehensive evaluation framework for Text-to-Image models, concentrating particularly on their adherence to prompts. We created a novel dataset that aimed to assess the robustness of these models in generating images that conform to the specified factors of variation in the input text prompts. Our evaluation studies present findings on three variants of Stable Diffusion models: Stable Diffusion 3 Medium, Stable Diffusion 3.5 Large, and Stable Diffusion 3.5 Large Turbo, and two variants of Janus models: Janus Pro 1B and Janus Pro 7B. We introduce a pipeline that leverages text descriptions generated by the gpt-4o model for our ground-truth images, which are then used to generate artificial images by passing these descriptions to the Text-to-Image models. We then pass these generated images again through gpt-4o using the same system prompt and compare the variation between the two descriptions. Our results reveal that these models struggle to create simple binary images with only two factors of variation: a simple geometric shape and its location. We also show, using pre-trained VAEs on our dataset, that they fail to generate images that follow our input dataset distribution.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文本到图像模型 评估框架 Stable Diffusion Janus模型
相关文章