cs.AI updates on arXiv.org 07月14日 12:08
TableReasoner: Advancing Table Reasoning Framework with Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出名为TableReasoner的表格问答系统,通过结合结构化和语义表示的模型,有效处理大规模表格数据,并解决实体模糊性问题,在SemEval-2025任务中取得优异成绩。

arXiv:2507.08046v1 Announce Type: new Abstract: The paper presents our system developed for table question answering (TQA). TQA tasks face challenges due to the characteristics of real-world tabular data, such as large size, incomplete column semantics, and entity ambiguity. To address these issues, we propose a large language model (LLM)-powered and programming-based table reasoning framework, named TableReasoner. It models a table using the schema that combines structural and semantic representations, enabling holistic understanding and efficient processing of large tables. We design a multi-step schema linking plan to derive a focused table schema that retains only query-relevant information, eliminating ambiguity and alleviating hallucinations. This focused table schema provides precise and sufficient table details for query refinement and programming. Furthermore, we integrate the reasoning workflow into an iterative thinking architecture, allowing incremental cycles of thinking, reasoning and reflection. Our system achieves first place in both subtasks of SemEval-2025 Task 8.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表格问答 大语言模型 表推理框架
相关文章