cs.AI updates on arXiv.org 07月14日 12:08
A Multi-granularity Concept Sparse Activation and Hierarchical Knowledge Graph Fusion Framework for Rare Disease Diagnosis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合多粒度稀激活和层次知识图谱的框架,通过四种匹配算法和五级回退策略,提高罕见病诊断的准确性,实验结果显示,该方法在信息质量、推理和专业表达方面均有显著提升。

arXiv:2507.08529v1 Announce Type: new Abstract: Despite advances from medical large language models in healthcare, rare-disease diagnosis remains hampered by insufficient knowledge-representation depth, limited concept understanding, and constrained clinical reasoning. We propose a framework that couples multi-granularity sparse activation of medical concepts with a hierarchical knowledge graph. Four complementary matching algorithms, diversity control, and a five-level fallback strategy enable precise concept activation, while a three-layer knowledge graph (taxonomy, clinical features, instances) provides structured, up-to-date context. Experiments on the BioASQ rare-disease QA set show BLEU gains of 0.09, ROUGE gains of 0.05, and accuracy gains of 0.12, with peak accuracy of 0.89 approaching the 0.90 clinical threshold. Expert evaluation confirms improvements in information quality, reasoning, and professional expression, suggesting our approach shortens the "diagnostic odyssey" for rare-disease patients.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

罕见病诊断 知识图谱 多粒度稀激活
相关文章