taiyangnews 20小时前
AI & First Nations’ Knowledge Boost Solar Forecast Accuracy
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

澳大利亚查尔斯·达尔文大学的研究人员,通过结合人工智能模型和澳大利亚原住民的季节知识,开发出一种新的太阳能发电预测方法,名为FNS-Metrics。该方法采用了原住民的季节性知识,并结合了Conv-Ensemble模型,该模型融合了Conv1D、transformer和LSTM网络等深度学习工具,以提高预测的准确性。研究团队使用来自Tiwi、Gulumoerrgin(Larrakia)、Kunwinjku和Ngurrungurrudjba等原住民的日历,以及现代日历进行开发,结果显示该模型在预测太阳能方面比传统方法提高了14.6%的准确性,误差降低了26.2%。

🌱研究的核心在于开发了一种名为FNS-Metrics的新型太阳能预测方法,该方法将原住民的季节性知识与先进的AI技术相结合。

💡FNS-Metrics方法采用了Conv-Ensemble模型,该模型整合了多种深度学习工具,包括Conv1D、transformer和LSTM网络,以更好地学习数据中的模式。

📅研究团队使用了Tiwi、Gulumoerrgin(Larrakia)、Kunwinjku和Ngurrungurrudjba等原住民的日历,以及现代日历作为季节性知识的来源,这些知识基于当地的生态线索,如动植物行为,与日照和天气模式的变化密切相关。

✅研究结果表明,新模型在预测太阳能发电方面比现有方法提高了14.6%的准确性,误差降低了26.2%,误差率低于行业内常用预测模型的一半。

🗣️研究人员认为,将原住民的季节性知识融入太阳能预测中,能够显著提高预测的准确性,使预测与数千年来观察和理解的自然周期相一致,从而为澳大利亚特定地区提供更精确、更具文化敏感性的预测。

Researchers from Australia’s Charles Darwin University (CDU) report an increase of 14.6% in solar generation forecast using a new artificial intelligence (AI) model, combined with traditional knowledge of seasons from the local First Nations community. 

This ‘world-first’ study by the university proposes a new solar power forecasting method called FNS-Metrics, which uses seasonal knowledge from First Nations calendars. It also presents a Conv-Ensemble model that combines different deep learning tools – Conv1D, transformers, and LSTM networks – to better learn patterns in the data.

The team developed the model using the Tiwi, Gulumoerrgin (Larrakia), Kunwinjku and Ngurrungurrudjba First Nations calendars, and a modern calendar known as Red Centre. Their seasonal insights are based on local ecological cues, such as plant and animal behaviors that are, in turn, closely tied to the changes in sunlight and weather patterns. 

To test their results, researchers created a new dataset using solar and weather data from Alice Springs, Australia, along with First Nations seasonal insights. They found that this new model predicts solar power more accurately than older methods, with a 14.6% improvement in accuracy and 26.2% reduction in error. 

According to the results, the error rate is less than half of the error rate seen with popular forecasting models used in the industry at present. 

“Incorporating First Nations seasonal knowledge into solar power generation predictions can significantly enhance accuracy by aligning forecasts with natural cycles that have been observed and understood for thousands of years,” explained Co-author, CDU PhD student and Bundjalang man Luke Hamlin.  

“By integrating this knowledge, predictions can be tailored to reflect more granular shifts in environmental conditions, leading to more precise and culturally informed forecasting for specific regions across Australia,” added Hamlin.  

Combining advanced AI and ancient First Nations wisdom could revolutionize prediction technology, argue the researchers. 

The complete study, titled Conv-Ensemble for Solar Power Prediction with First Nations Seasonal Information, was published in the IEEE Open Journal of the Computer Society. 

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

太阳能预测 人工智能 原住民知识 FNS-Metrics Conv-Ensemble
相关文章