cs.AI updates on arXiv.org 07月11日 12:04
Optimization Guarantees for Square-Root Natural-Gradient Variational Inference
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种使用平方根参数化方法解决自然梯度下降在变分推理中理论收敛保证难题,并建立了新的收敛保证。实验结果表明,自然梯度方法在收敛速度和优势方面优于使用欧几里得或Wasserstein几何的算法。

arXiv:2507.07853v1 Announce Type: cross Abstract: Variational inference with natural-gradient descent often shows fast convergence in practice, but its theoretical convergence guarantees have been challenging to establish. This is true even for the simplest cases that involve concave log-likelihoods and use a Gaussian approximation. We show that the challenge can be circumvented for such cases using a square-root parameterization for the Gaussian covariance. This approach establishes novel convergence guarantees for natural-gradient variational-Gaussian inference and its continuous-time gradient flow. Our experiments demonstrate the effectiveness of natural gradient methods and highlight their advantages over algorithms that use Euclidean or Wasserstein geometries.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自然梯度下降 变分推理 收敛保证 自然梯度方法 实验结果
相关文章