cs.AI updates on arXiv.org 07月11日 12:04
Single-to-mix Modality Alignment with Multimodal Large Language Model for Document Image Machine Translation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为M4Doc的文档图像机器翻译框架,通过利用多模态大语言模型(MLLMs)解决文档图像翻译中的泛化挑战,实现了高效率与高质量翻译。

arXiv:2507.07572v1 Announce Type: cross Abstract: Document Image Machine Translation (DIMT) aims to translate text within document images, facing generalization challenges due to limited training data and the complex interplay between visual and textual information. To address these challenges, we introduce M4Doc, a novel single-to-mix modality alignment framework leveraging Multimodal Large Language Models (MLLMs). M4Doc aligns an image-only encoder with the multimodal representations of an MLLM, pre-trained on large-scale document image datasets. This alignment enables a lightweight DIMT model to learn crucial visual-textual correlations during training. During inference, M4Doc bypasses the MLLM, maintaining computational efficiency while benefiting from its multimodal knowledge. Comprehensive experiments demonstrate substantial improvements in translation quality, especially in cross-domain generalization and challenging document image scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文档图像机器翻译 M4Doc 多模态大语言模型 翻译质量 泛化挑战
相关文章