cs.AI updates on arXiv.org 07月11日 12:04
Collective Communication Profiling of Modern-day Machine Learning Workloads
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对机器学习在分布式系统中的通信行为进行深入分析,以优化网络资源配置,减少网络异常对工作负载的影响。

arXiv:2507.07117v1 Announce Type: cross Abstract: Machine Learning jobs, carried out on large number of distributed high performance systems, involve periodic communication using operations like AllReduce, AllGather, and Broadcast. These operations may create high bandwidth and bursty traffic patterns, leading to network congestion and packet loss, thus impacting the performance of these jobs. Hence it is imperative to analyze these patterns, which can be helpful in provisioning network resources depending on the type of machine learning workloads. In this poster we carry out extensive analysis of the collective communication behavior seen in a wide variety of models (ex. DeepSeek, GPT, Llama, etc.) To achieve this we instrument Nvidia Collective Communication Library logging functionality for richer context about the collectives and workloads. We adjust configuration parameters that influence collective communication behavior, such as parallelism, number of nodes, and model type. This overview presents and discusses some of the results on the collective communication behavior for the open source DeepSeek V3 inferencing model, which includes operation type and count, transfer sizes per operation, and request size distribution. Our analysis shows that it makes sense to rethink current collective communication frameworks and network topologies so as to accommodate the effect of network anomalies on the mentioned workloads.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 分布式系统 通信行为 网络资源 性能优化
相关文章