cs.AI updates on arXiv.org 07月11日 12:03
Enhancing Vaccine Safety Surveillance: Extracting Vaccine Mentions from Emergency Department Triage Notes Using Fine-Tuned Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究评估了Llama 3.2模型在从急诊科分诊记录中提取疫苗相关信息,以支持近实时疫苗安全监测的能力。通过提示工程创建数据集,并经人工标注确认,比较了提示工程模型、微调模型和基于规则的模型的表现。结果表明,微调的Llama 3亿参数模型在提取疫苗名称的准确性上优于其他模型,并通过模型量化实现资源受限环境下的高效部署。

arXiv:2507.07599v1 Announce Type: new Abstract: This study evaluates fine-tuned Llama 3.2 models for extracting vaccine-related information from emergency department triage notes to support near real-time vaccine safety surveillance. Prompt engineering was used to initially create a labeled dataset, which was then confirmed by human annotators. The performance of prompt-engineered models, fine-tuned models, and a rule-based approach was compared. The fine-tuned Llama 3 billion parameter model outperformed other models in its accuracy of extracting vaccine names. Model quantization enabled efficient deployment in resource-constrained environments. Findings demonstrate the potential of large language models in automating data extraction from emergency department notes, supporting efficient vaccine safety surveillance and early detection of emerging adverse events following immunization issues.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Llama 3.2模型 疫苗安全监测 数据提取 模型量化
相关文章