cs.AI updates on arXiv.org 07月10日 12:06
Geometric Constraints in Deep Learning Frameworks: A Survey
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了立体摄影测量技术及其与深度学习的结合,探讨了几何约束在深度学习框架中的应用,提出了新的分类体系,并展望了未来研究方向。

arXiv:2403.12431v2 Announce Type: replace-cross Abstract: Stereophotogrammetry is an established technique for scene understanding. Its origins go back to at least the 1800s when people first started to investigate using photographs to measure the physical properties of the world. Since then, thousands of approaches have been explored. The classic geometric technique of Shape from Stereo is built on using geometry to define constraints on scene and camera deep learning without any attempt to explicitly model the geometry. In this survey, we explore geometry-inspired deep learning-based frameworks. We compare and contrast geometry enforcing constraints integrated into deep learning frameworks for depth estimation and other closely related vision tasks. We present a new taxonomy for prevalent geometry enforcing constraints used in modern deep learning frameworks. We also present insightful observations and potential future research directions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

立体摄影测量 深度学习 几何约束 深度学习框架 视觉任务
相关文章