cs.AI updates on arXiv.org 07月10日 12:05
A Single-Point Measurement Framework for Robust Cyber-Attack Diagnosis in Smart Microgrids Using Dual Fractional-Order Feature Analysis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于单VPQ传感器的低延迟故障定位与攻击检测方案,通过构建双分数阶特征库和两阶段分层分类器,有效识别故障,并采用渐进式记忆重放对抗训练增强鲁棒性,实验结果表明该方案在多种攻击场景下均能保持高诊断准确率。

arXiv:2507.06890v1 Announce Type: cross Abstract: Cyber-attacks jeopardize the safe operation of smart microgrids. At the same time, existing diagnostic methods either depend on expensive multi-point instrumentation or stringent modelling assumptions that are untenable under single-sensor constraints. This paper proposes a Fractional-Order Memory-Enhanced Attack-Diagnosis Scheme (FO-MADS) that achieves low-latency fault localisation and cyber-attack detection using only one VPQ (Voltage-Power-Reactive-power) sensor. FO-MADS first constructs a dual fractional-order feature library by jointly applying Caputo and Gr\"unwald-Letnikov derivatives, thereby amplifying micro-perturbations and slow drifts in the VPQ signal. A two-stage hierarchical classifier then pinpoints the affected inverter and isolates the faulty IGBT switch, effectively alleviating class imbalance. Robustness is further strengthened through Progressive Memory-Replay Adversarial Training (PMR-AT), whose attack-aware loss is dynamically re-weighted via Online Hard Example Mining (OHEM) to prioritise the most challenging samples. Experiments on a four-inverter microgrid testbed comprising 1 normal and 24 fault classes under four attack scenarios demonstrate diagnostic accuracies of 96.6 % (bias), 94.0 % (noise), 92.8 % (data replacement), and 95.7 % (replay), while sustaining 96.7 % under attack-free conditions. These results establish FO-MADS as a cost-effective and readily deployable solution that markedly enhances the cyber-physical resilience of smart microgrids.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能微电网 攻击诊断 单传感器 分数阶特征 对抗训练
相关文章