cs.AI updates on arXiv.org 07月10日 12:05
Intrinsic Training Signals for Federated Learning Aggregation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LIVAR的联邦学习模型聚合方法,通过利用现有训练信号,无需架构修改即可实现高效模型聚合,在多个基准测试中达到最佳性能。

arXiv:2507.06813v1 Announce Type: cross Abstract: Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code will be made publicly available upon acceptance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 模型聚合 训练信号
相关文章