cs.AI updates on arXiv.org 07月10日 12:05
Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining: Method, Evaluation and Applications
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了开放源代码大语言模型在商业应用中的机会与挑战,提出基于DACP的小型语言模型解决方案,通过实验验证其提升目标领域性能的同时保持通用能力,为企业和组织提供高效、可扩展的部署选择。

arXiv:2507.06795v1 Announce Type: cross Abstract: The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative, despite their inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been previously explored as a method for domain adaptation, its utility in commercial applications remains under-examined. In this study, we validate the effectiveness of applying a DACP-based recipe across diverse foundation models and service domains. Through extensive experiments and real-world evaluations, we demonstrate that DACP-applied sLLMs achieve substantial gains in target domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DACP sLLMs 商业应用 语言模型 性能提升
相关文章