cs.AI updates on arXiv.org 07月10日 12:05
Denoising Multi-Beta VAE: Representation Learning for Disentanglement and Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种新型生成模型框架,通过多种β值学习对应的潜在表示,实现解耦与重建质量的平衡,并通过非线性扩散模型实现潜在表示的平滑过渡,提高生成质量。

arXiv:2507.06613v1 Announce Type: cross Abstract: Disentangled and interpretable latent representations in generative models typically come at the cost of generation quality. The $\beta$-VAE framework introduces a hyperparameter $\beta$ to balance disentanglement and reconstruction quality, where setting $\beta > 1$ introduces an information bottleneck that favors disentanglement over sharp, accurate reconstructions. To address this trade-off, we propose a novel generative modeling framework that leverages a range of $\beta$ values to learn multiple corresponding latent representations. First, we obtain a slew of representations by training a single variational autoencoder (VAE), with a new loss function that controls the information retained in each latent representation such that the higher $\beta$ value prioritize disentanglement over reconstruction fidelity. We then, introduce a non-linear diffusion model that smoothly transitions latent representations corresponding to different $\beta$ values. This model denoises towards less disentangled and more informative representations, ultimately leading to (almost) lossless representations, enabling sharp reconstructions. Furthermore, our model supports sample generation without input images, functioning as a standalone generative model. We evaluate our framework in terms of both disentanglement and generation quality. Additionally, we observe smooth transitions in the latent spaces with respect to changes in $\beta$, facilitating consistent manipulation of generated outputs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生成模型 解耦 潜在表示 重建质量 非线性扩散模型
相关文章