cs.AI updates on arXiv.org 07月10日 12:05
Generative Lagrangian data assimilation for ocean dynamics under extreme sparsity
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合神经网络算子和去噪扩散概率模型的深度学习框架,从稀疏的拉格朗日观测数据中重建高分辨率海洋状态,有效捕捉小尺度动力学,并在稀疏采样条件下展现优于其他方法的性能。

arXiv:2507.06479v1 Announce Type: cross Abstract: Reconstructing ocean dynamics from observational data is fundamentally limited by the sparse, irregular, and Lagrangian nature of spatial sampling, particularly in subsurface and remote regions. This sparsity poses significant challenges for forecasting key phenomena such as eddy shedding and rogue waves. Traditional data assimilation methods and deep learning models often struggle to recover mesoscale turbulence under such constraints. We leverage a deep learning framework that combines neural operators with denoising diffusion probabilistic models (DDPMs) to reconstruct high-resolution ocean states from extremely sparse Lagrangian observations. By conditioning the generative model on neural operator outputs, the framework accurately captures small-scale, high-wavenumber dynamics even at $99\%$ sparsity (for synthetic data) and $99.9\%$ sparsity (for real satellite observations). We validate our method on benchmark systems, synthetic float observations, and real satellite data, demonstrating robust performance under severe spatial sampling limitations as compared to other deep learning baselines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 海洋动力学 数据重建 神经网络算子 去噪扩散概率模型
相关文章