cs.AI updates on arXiv.org 07月10日 12:05
Too Human to Model:The Uncanny Valley of LLMs in Social Simulation -- When Generative Language Agents Misalign with Modelling Principles
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLM)在社交模拟中构建代理时面临的挑战,包括与现实人类行为不符、难以建模的复杂性和抽象性等,并提出了未来应用的建议。

arXiv:2507.06310v1 Announce Type: cross Abstract: Large language models (LLMs) have been increasingly used to build agents in social simulation because of their impressive abilities to generate fluent, contextually coherent dialogues. Such abilities can enhance the realism of models. However, the pursuit of realism is not necessarily compatible with the epistemic foundation of modelling. We argue that LLM agents, in many regards, are too human to model: they are too expressive, detailed and intractable to be consistent with the abstraction, simplification, and interpretability typically demanded by modelling. Through a model-building thought experiment that converts the Bass diffusion model to an LLM-based variant, we uncover five core dilemmas: a temporal resolution mismatch between natural conversation and abstract time steps; the need for intervention in conversations while avoiding undermining spontaneous agent outputs; the temptation to introduce rule-like instructions in prompts while maintaining conversational naturalness; the tension between role consistency and role evolution across time; and the challenge of understanding emergence, where system-level patterns become obscured by verbose micro textual outputs. These dilemmas steer the LLM agents towards an uncanny valley: not abstract enough to clarify underlying social mechanisms, while not natural enough to represent realistic human behaviour. This exposes an important paradox: the realism of LLM agents can obscure, rather than clarify, social dynamics when misapplied. We tease out the conditions in which LLM agents are ideally suited: where system-level emergence is not the focus, linguistic nuances and meaning are central, interactions unfold in natural time, and stable role identity is more important than long-term behavioural evolution. We call for repositioning LLM agents in the ecosystem of social simulation for future applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM代理 社交模拟 模型构建 挑战与机遇
相关文章