cs.AI updates on arXiv.org 07月09日 12:02
A Cascading Cooperative Multi-agent Framework for On-ramp Merging Control Integrating Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CCMA框架,结合强化学习、LLM和检索增强生成机制,优化多智能体协同决策,在复杂驾驶环境中显著提升RL性能。

arXiv:2503.08199v2 Announce Type: replace-cross Abstract: Traditional Reinforcement Learning (RL) suffers from replicating human-like behaviors, generalizing effectively in multi-agent scenarios, and overcoming inherent interpretability issues.These tasks are compounded when deep environment understanding, agent coordination and dynamic optimization are required. While Large Language Model (LLM) enhanced methods have shown promise in generalization and interoperability, they often neglect necessary multi-agent coordination. Therefore, we introduce the Cascading Cooperative Multi-agent (CCMA) framework, integrating RL for individual interactions, a fine-tuned LLM for regional cooperation, a reward function for global optimization, and the Retrieval-augmented Generation mechanism to dynamically optimize decision-making across complex driving scenarios. Our experiments demonstrate that the CCMA outperforms existing RL methods, demonstrating significant improvements in both micro and macro-level performance in complex driving environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CCMA框架 多智能体协同 强化学习 复杂驾驶环境 LLM
相关文章