cs.AI updates on arXiv.org 07月09日 12:02
Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出EKBM框架,通过整合快慢推理系统,提升大型语言模型在处理超出知识边界查询时的可靠性,同时保持高效能。

arXiv:2503.02233v3 Announce Type: replace-cross Abstract: Large language models (LLMs) are prone to hallucination stemming from misaligned self-awareness, particularly when processing queries exceeding their knowledge boundaries. While existing mitigation strategies employ uncertainty estimation or query rejection mechanisms, they suffer from computational efficiency and sacrificed helpfulness. To address these issues, we propose the Explicit Knowledge Boundary Modeling (EKBM) framework, integrating fast and slow reasoning systems to harmonize reliability and usability. The framework first employs a fast-thinking model to generate confidence-labeled responses, enabling immediate utilization of high-confidence outputs, whereas uncertain predictions trigger a slow refinement model for accuracy improvement. To align model behavior with our proposed object, we propose a hybrid training pipeline, enhancing self-awareness without degrading task performance. Evaluations on dialogue state tracking tasks demonstrate that EKBM achieves superior model reliability over uncertainty-based baselines. Further analysis reveals that refinement substantially boosts accuracy while maintaining low computational overhead. The framework establishes a scalable paradigm for deploying reliable LLMs in error-sensitive applications, effectively balancing accuracy and practical utility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 知识边界 EKBM框架 可靠性 推理系统
相关文章