cs.AI updates on arXiv.org 07月09日 12:02
Detecting value-expressive text posts in Russian social media
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种用于检测俄罗斯社交媒体中价值观表达帖子的模型,通过结合人工和AI标注,训练多种分类模型,最终实现高价值检测质量。

arXiv:2312.08968v2 Announce Type: replace-cross Abstract: Basic values are concepts or beliefs which pertain to desirable end-states and transcend specific situations. Studying personal values in social media can illuminate how and why societal values evolve especially when the stimuli-based methods, such as surveys, are inefficient, for instance, in hard-to-reach populations. On the other hand, user-generated content is driven by the massive use of stereotyped, culturally defined speech constructions rather than authentic expressions of personal values. We aimed to find a model that can accurately detect value-expressive posts in Russian social media VKontakte. A training dataset of 5,035 posts was annotated by three experts, 304 crowd-workers and ChatGPT. Crowd-workers and experts showed only moderate agreement in categorizing posts. ChatGPT was more consistent but struggled with spam detection. We applied an ensemble of human- and AI-assisted annotation involving active learning approach, subsequently trained several classification models using embeddings from various pre-trained transformer-based language models. The best performance was achieved with embeddings from a fine-tuned rubert-tiny2 model, yielding high value detection quality (F1 = 0.75, F1-macro = 0.80). This model provides a crucial step to a study of values within and between Russian social media users.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

价值观检测 社交媒体 语言模型 分类模型
相关文章