cs.AI updates on arXiv.org 07月09日 12:01
PrefixAgent: An LLM-Powered Design Framework for Efficient Prefix Adder Optimization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出 PrefixAgent,一种基于大型语言模型的前缀加法器优化框架,有效降低设计空间,提升优化效率和性能。

arXiv:2507.06127v1 Announce Type: cross Abstract: Prefix adders are fundamental arithmetic circuits, but their design space grows exponentially with bit-width, posing significant optimization challenges. Previous works face limitations in performance, generalization, and scalability. To address these challenges, we propose PrefixAgent, a large language model (LLM)-powered framework that enables efficient prefix adder optimization. Specifically, PrefixAgent reformulates the problem into subtasks including backbone synthesis and structure refinement, which effectively reduces the search space. More importantly, this new design perspective enables us to efficiently collect enormous high-quality data and reasoning traces with E-graph, which further results in an effective fine-tuning of LLM. Experimental results show that PrefixAgent synthesizes prefix adders with consistently smaller areas compared to baseline methods, while maintaining scalability and generalization in commercial EDA flows.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

前缀加法器 优化设计 大型语言模型 EDA流程
相关文章