cs.AI updates on arXiv.org 07月09日 12:01
Simple Convergence Proof of Adam From a Sign-like Descent Perspective
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将Adam优化器视为符号型优化器,简化其收敛分析,证明其在特定条件下达到最优收敛速度,并为学习率调整提供理论指导。

arXiv:2507.05966v1 Announce Type: cross Abstract: Adam is widely recognized as one of the most effective optimizers for training deep neural networks (DNNs). Despite its remarkable empirical success, its theoretical convergence analysis remains unsatisfactory. Existing works predominantly interpret Adam as a preconditioned stochastic gradient descent with momentum (SGDM), formulated as $\bm{x}_{t+1} = \bm{x}_t - \frac{\gamma_t}{{\sqrt{\bm{v}_t}+\epsilon}} \circ \bm{m}t$. This perspective necessitates strong assumptions and intricate techniques, resulting in lengthy and opaque convergence proofs that are difficult to verify and extend. In contrast, we propose a novel interpretation by treating Adam as a sign-like optimizer, expressed as $\bm{x}{t+1} = \bm{x}_t - \gamma_t \frac{|\bm{m}_t|}{{\sqrt{\bm{v}_t}+\epsilon}} \circ {\rm Sign}(\bm{m}_t)$. This reformulation significantly simplifies the convergence analysis. For the first time, with some mild conditions, we prove that Adam achieves the optimal rate of ${\cal O}(\frac{1}{T^{\sfrac{1}{4}}})$ rather than the previous ${\cal O} \left(\frac{\ln T}{T^{\sfrac{1}{4}}}\right)$ under weak assumptions of the generalized $p$-affine variance and $(L_0, L_1, q)$-smoothness, without dependence on the model dimensionality or the numerical stability parameter $\epsilon$. Additionally, our theoretical analysis provides new insights into the role of momentum as a key factor ensuring convergence and offers practical guidelines for tuning learning rates in Adam, further bridging the gap between theory and practice.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Adam优化器 收敛分析 深度学习 学习率调整
相关文章