cs.AI updates on arXiv.org 07月09日 12:01
On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了遥感图像场景分类中xAI方法的解释效果,分析了十种解释指标和五种特征归因方法在三个数据集上的应用,指出了现有方法的局限性,并提出了相关改进建议。

arXiv:2507.05916v1 Announce Type: cross Abstract: The development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS). Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV), and their direct usage in RS may not be suitable. To address this issue, in this paper, we investigate the effectiveness of explanation methods and metrics in the context of RS image scene classification. In detail, we methodologically and experimentally analyze ten explanation metrics spanning five categories (faithfulness, robustness, localization, complexity, randomization), applied to five established feature attribution methods (Occlusion, LIME, GradCAM, LRP, and DeepLIFT) across three RS datasets. Our methodological analysis identifies key limitations in both explanation methods and metrics. The performance of perturbation-based methods, such as Occlusion and LIME, heavily depends on perturbation baselines and spatial characteristics of RS scenes. Gradient-based approaches like GradCAM struggle when multiple labels are present in the same image, while some relevance propagation methods (LRP) can distribute relevance disproportionately relative to the spatial extent of classes. Analogously, we find limitations in evaluation metrics. Faithfulness metrics share the same problems as perturbation-based methods. Localization metrics and complexity metrics are unreliable for classes with a large spatial extent. In contrast, robustness metrics and randomization metrics consistently exhibit greater stability. Our experimental results support these methodological findings. Based on our analysis, we provide guidelines for selecting explanation methods, metrics, and hyperparameters in the context of RS image scene classification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

xAI 遥感图像 场景分类 解释方法 性能评估
相关文章