arXiv:2507.05754v1 Announce Type: cross Abstract: A principal barrier to large-scale deployment of urban autonomous driving systems lies in the prevalence of complex scenarios and edge cases. Existing systems fail to effectively interpret semantic information within traffic contexts and discern intentions of other participants, consequently generating decisions misaligned with skilled drivers' reasoning patterns. We present LeAD, a dual-rate autonomous driving architecture integrating imitation learning-based end-to-end (E2E) frameworks with large language model (LLM) augmentation. The high-frequency E2E subsystem maintains real-time perception-planning-control cycles, while the low-frequency LLM module enhances scenario comprehension through multi-modal perception fusion with HD maps and derives optimal decisions via chain-of-thought (CoT) reasoning when baseline planners encounter capability limitations. Our experimental evaluation in the CARLA Simulator demonstrates LeAD's superior handling of unconventional scenarios, achieving 71 points on Leaderboard V1 benchmark, with a route completion of 93%.