cs.AI updates on arXiv.org 07月09日 12:01
LeAD: The LLM Enhanced Planning System Converged with End-to-end Autonomous Driving
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出LeAD,一种结合模仿学习和大型语言模型的自动驾驶架构,有效应对复杂场景和边缘情况,实现高效率和准确度。

arXiv:2507.05754v1 Announce Type: cross Abstract: A principal barrier to large-scale deployment of urban autonomous driving systems lies in the prevalence of complex scenarios and edge cases. Existing systems fail to effectively interpret semantic information within traffic contexts and discern intentions of other participants, consequently generating decisions misaligned with skilled drivers' reasoning patterns. We present LeAD, a dual-rate autonomous driving architecture integrating imitation learning-based end-to-end (E2E) frameworks with large language model (LLM) augmentation. The high-frequency E2E subsystem maintains real-time perception-planning-control cycles, while the low-frequency LLM module enhances scenario comprehension through multi-modal perception fusion with HD maps and derives optimal decisions via chain-of-thought (CoT) reasoning when baseline planners encounter capability limitations. Our experimental evaluation in the CARLA Simulator demonstrates LeAD's superior handling of unconventional scenarios, achieving 71 points on Leaderboard V1 benchmark, with a route completion of 93%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动驾驶 模仿学习 大型语言模型 复杂场景 边缘情况
相关文章