cs.AI updates on arXiv.org 07月09日 12:01
A Satellite-Ground Synergistic Large Vision-Language Model System for Earth Observation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出在低地球轨道卫星网络中部署大型视觉语言模型(LVLM),设计SpaceVerse系统,通过卫星与地面站的协同工作,提高地球观测图像处理的准确性和效率。

arXiv:2507.05731v1 Announce Type: cross Abstract: Recently, large vision-language models (LVLMs) unleash powerful analysis capabilities for low Earth orbit (LEO) satellite Earth observation images in the data center. However, fast satellite motion, brief satellite-ground station (GS) contact windows, and large size of the images pose a data download challenge. To enable near real-time Earth observation applications (e.g., disaster and extreme weather monitoring), we should explore how to deploy LVLM in LEO satellite networks, and design SpaceVerse, an efficient satellite-ground synergistic LVLM inference system. To this end, firstly, we deploy compact LVLMs on satellites for lightweight tasks, whereas regular LVLMs operate on GSs to handle computationally intensive tasks. Then, we propose a computing and communication co-design framework comprised of a progressive confidence network and an attention-based multi-scale preprocessing, used to identify on-satellite inferring data, and reduce data redundancy before satellite-GS transmission, separately. We implement and evaluate SpaceVerse on real-world LEO satellite constellations and datasets, achieving a 31.2% average gain in accuracy and a 51.2% reduction in latency compared to state-of-the-art baselines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LVLM 卫星网络 地球观测 SpaceVerse 数据传输
相关文章