arXiv:2507.05636v1 Announce Type: cross Abstract: Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.