cs.AI updates on arXiv.org 07月09日 12:01
Graph Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了图学习的发展、关键技术和挑战,包括可扩展性、动态建模、多模态学习等,并探讨了图学习与其他AI领域的融合趋势。

arXiv:2507.05636v1 Announce Type: cross Abstract: Graph learning has rapidly evolved into a critical subfield of machine learning and artificial intelligence (AI). Its development began with early graph-theoretic methods, gaining significant momentum with the advent of graph neural networks (GNNs). Over the past decade, progress in scalable architectures, dynamic graph modeling, multimodal learning, generative AI, explainable AI (XAI), and responsible AI has broadened the applicability of graph learning to various challenging environments. Graph learning is significant due to its ability to model complex, non-Euclidean relationships that traditional machine learning struggles to capture, thus better supporting real-world applications ranging from drug discovery and fraud detection to recommender systems and scientific reasoning. However, challenges like scalability, generalization, heterogeneity, interpretability, and trustworthiness must be addressed to unlock its full potential. This survey provides a comprehensive introduction to graph learning, focusing on key dimensions including scalable, temporal, multimodal, generative, explainable, and responsible graph learning. We review state-of-the-art techniques for efficiently handling large-scale graphs, capturing dynamic temporal dependencies, integrating heterogeneous data modalities, generating novel graph samples, and enhancing interpretability to foster trust and transparency. We also explore ethical considerations, such as privacy and fairness, to ensure responsible deployment of graph learning models. Additionally, we identify and discuss emerging topics, highlighting recent integration of graph learning and other AI paradigms and offering insights into future directions. This survey serves as a valuable resource for researchers and practitioners seeking to navigate the rapidly evolving landscape of graph learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图学习 机器学习 人工智能 可扩展性 多模态学习
相关文章