cs.AI updates on arXiv.org 07月09日 12:01
The Fourier Spectral Transformer Networks For Efficient and Generalizable Nonlinear PDEs Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种融合经典谱方法和注意力机制的统一傅里叶谱变换神经网络,通过将偏微分方程转化为谱常微分方程,使用高精度数值求解器生成训练数据,并利用Transformer网络模拟谱系数的演变,在Navier-Stokes方程和Burgers方程上展示其预测的准确性,优于传统方法和机器学习方法。

arXiv:2507.05584v1 Announce Type: cross Abstract: In this work we propose a unified Fourier Spectral Transformer network that integrates the strengths of classical spectral methods and attention based neural architectures. By transforming the original PDEs into spectral ordinary differential equations, we use high precision numerical solvers to generate training data and use a Transformer network to model the evolution of the spectral coefficients. We demonstrate the effectiveness of our approach on the two dimensional incompressible Navier-Stokes equations and the one dimensional Burgers' equation. The results show that our spectral Transformer can achieve highly accurate long term predictions even with limited training data, better than traditional numerical methods and machine learning methods in forecasting future flow dynamics. The proposed framework generalizes well to unseen data, bringing a promising paradigm for real time prediction and control of complex dynamical systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

谱变换神经网络 流体动力学 机器学习
相关文章