cs.AI updates on arXiv.org 07月09日 12:01
LoRA-Augmented Generation (LAG) for Knowledge-Intensive Language Tasks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LoRA-Augmented Generation(LAG)方法,通过无额外训练和数据访问,高效地筛选、检索和应用专家,在知识密集型任务上表现优异,并与检索增强生成(RAG)等方案兼容。

arXiv:2507.05346v1 Announce Type: cross Abstract: The proliferation of fine-tuned language model experts for specific tasks and domains signals the need for efficient selection and combination methods. We propose LoRA-Augmented Generation (LAG) for leveraging large libraries of knowledge and task-specific LoRA adapters. LAG requires no additional training or access to data, and efficiently filters, retrieves, and applies experts on a per-token and layer basis. We evaluate LAG on various knowledge-intensive tasks, achieving superior performance over existing data-free methods. We explore scenarios where additional data is available, demonstrating LAG's compatibility with alternative solutions such as retrieval-augmented generation (RAG).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LoRA-Augmented Generation 知识库利用 高效筛选 知识密集型任务
相关文章